10 research outputs found

    Optimally Efficient Multi-Party Fair Exchange and Fair Secure Multi-Party Computation

    Get PDF
    Multi-party fair exchange (MFE) and fair secure multi-party computation (fair SMPC) are under-studied fields of research, with practical importance. We examine MFE scenarios where every participant has some item, and at the end of the protocol, either every participant receives every other participant’s item, or no participant receives anything. This is a particularly hard scenario, even though it is directly applicable to protocols such as fair SMPC or multi-party contract signing. We further generalize our protocol to work for any exchange topology. We analyse the case where a trusted third party (TTP) is optimistically available, although we emphasize that the trust put on the TTP is only regarding the fairness, and our protocols preserve the privacy of the exchanged items even against a malicious TTP. We construct an asymptotically optimal (for the complete topology) multi-party fair exchange protocol that requires a constant number of rounds, in comparison to linear, and O(n^2) messages, in comparison to cubic, where n is the number of participating parties. We enable the parties to efficiently exchange any item that can be efficiently put into a verifiable escrow (e.g., signatures on a contract). We show how to apply this protocol on top of any SMPC protocol to achieve a fairness guarantee with very little overhead, especially if the SMPC protocol works with arithmetic circuits. Our protocol guarantees fairness in its strongest sense: even if all n−1 other participants are malicious and colluding, fairness will hold

    How to Use Bitcoin to Design Fair Protocols

    No full text
    We study a model of fairness in secure computation in which an adversarial party that aborts on receiving output is forced to pay a mutually predefined monetary penalty. We then show how the Bitcoin network can be used to achieve the above notion of fairness in the two-party as well as the multiparty setting (with a dishonest majority). In particular, we propose new ideal functionalities and protocols for fair secure computation and fair lottery in this model. One of our main contributions is the definition of an ideal primitive, which we call F?CR (CR stands for “claim-or-refund”), that formalizes and abstracts the exact properties we require from the Bitcoin network to achieve our goals. Naturally, this abstraction allows us to design fair protocols in a hybrid model in which parties have access to the F?CR functionality, and is otherwise independent of the Bitcoin ecosystem. We also show an efficient realization of F?CR that requires only two Bitcoin transactions to be made on the network. Our constructions also enjoy high efficiency. In a multiparty setting, our protocols only require a constant number of calls to F?CR per party on top of a standard multiparty secure computation protocol. Our fair multiparty lottery protocol improves over previous solutions which required a quadratic number of Bitcoin transactions

    ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE) FROM NDVI PERSPECTIVE

    No full text
    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands estimated in this work sustained to agree within 2% of calibration coefficients estimated in the cross-calibration results

    THE BENEFITS AND CHALLENGES OF HAVING AN OPEN AND FREE BASIS SATELLITE DATA SHARING PLATFORM IN TURKEY: GEZGİN

    No full text
    Turkey is a county that experiences rapid socioeconomic development, which, in turn, leads to high urbanization rates due to migration of people from rural to urban areas, many large-scale development projects (e.g. highways, dams, housing and infrastructure), and environmental problems that adversely affect agriculture, such as soil erosion and deforestation. Furthermore, Turkey lies in a region prone to natural disasters, especially earthquakes, landslides, flooding and forest fires. Successfully overcoming these challenges requires continuous monitoring to enable rapid response as well as the development of effective socioeconomic policies. In this regard, space-based earth observation (EO) systems play a critical role in the rapid acquisiton and extraction of crucial information. The first launch of the first Turkish-designed satellite, RASAT, in 2011 led to the wide-spread exploitation of space-based resources by Turkish institutions through the dissemination of EO data on an open and free basis via the GEZGIN internet portal (http://www.gezgin.gov.tr). The push for data sharing was further instigated by the nationally funded project GEOPORTAL (“Satellite Image Processing and Geoportal Development Project”) and European Union FP7 project EOPOWER (“Earth Observation for Economic Empowerment”), which strove to create conditions for sustainable economic development through the increased use of Earth observation products and services for environmental applications. In this work, the technical challenges involving processing and preparing raw satellite data for dissemination as well as software design of the GEZGIN Portal will be presented
    corecore